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« Smart grid & data resources
1 Background: _ _
 Advanced data-analytics for smart grid

_ « Conventional machine learning
Introduction:
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* Power system stability assessment = from learned faults

U

to unlearned faults

Transfer learning: - Power converter fault diagnosis = from learned

converters to unlearned converters

* Masked-load forecasting = from original load to masked-
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1. Background
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B What is a “Smart Grid”?
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SCADA

Smart Grid: a modernized power grid with high-level renewables, more
distributed energy resources, and wide-spread deployments of advanced ICT

NetZero & Carbon Neutrality
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1. Background B Data Resources in Smart Grid

2. Introduction _ _
Wide-spread deployments of advanced ICT can provide more data and
information about the power system at different levels
3. Transfer
g':)avl\:’)?I?tsy/-s\tsesrc:‘ssment Grid Monitoring System Customer Meters Asset Sensors
Con r)t/ r Svstem (Phasor measurement unit (PMU), (Residential smart meter, Industrial (PQ sensor, battery management
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B Advanced Al and Data-Analytics for Smart Grid

Research Problems

Funding sources

NTU SODA Group’s Research Works

Feature selection

& extraction

Supervised
learning
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- Customer Level -

Non-instructive load

Data-driven home energy
management (HEM)

Residential Load
Forecasting
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B Motivations for transfer learning

2 Introduction l Conventional Machine Learning for Smart Grid Applications J

| Offline training mmmmmmmmm—m———— - .
1 Machine learning algorithm

| I
I I :

: Training Input > I « Classification/Regression :D Training Assumptions

J  Database ' SVM/DNN/ELM/DT... : » Training and application

R e ' » data are in the same
:5;|;n'e'a;;.;cgt‘ign """"""""""""""" i feature space =

i - __| ! * Training and application
| Vieasurement : distribution

[ I

{However, in practice, such assumptions may not always hold

BEE N 1 « The application target may be different
HEE ] 11 IR » The application target may have a limited amount of training data

System A System B » The target data may have a different distribution
(Training) (Apply) /ﬂl Machine

.'\/ .'x

Machine learning model

pr———

et T P T | learning model

|

|

|

ch3 Krth:;;?’hfsecurrento Wrong Output : may not Work In :
Output label =1 I

|

o KKK practlce
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. Background B Transfer Learning — Notations and Definitions

. i : : .
ntroduction - Domain : D={X, P(X)}, where X is the feature space X ={X, X,, ..., X, } and P(X) is the

marginal probability distribution.

. Transfer

Power System _ . o o .
Stability Assessment « Task: T={Y, f(-)}), where Y is the label space and f(-) is the objective predictive function,

|
I
|
|
|
I
|
|
1 . . - . .
Converter System 1 which is not observed but can be learned from the training data, and consists of pairs (x;, ¥;),
|
|
I
|
|
|
I
|
|

EZ:;LE;??::;E \'Nhtere X; eX and y; €Y. The function f(-) can predict the corresponding label, f(x), of a new
Instance X.

Forecasting

. » Transfer Learning (TL) : Given a source domain D, and its learning task T , a target domain
. D,and its learning task T, TL aims to help improve the learning of the target predictive

. function f,(*) in D, using the knowledge in D, and T, where D.# D, , or T, # T.

. D,# D, implies that either the features are different between the two datasets X # X+, or their
| marginal distributions are different P (X) # P(X)

i « T.# T, implies that Yo# Y. or P(Ys|Xs) # P(YX7)
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1. Background B Transfer Learning - lllustration and Different Categories

2. Introduction Traditional Learning Transfer Learning

Different Tasks Source Tasks Target Tasks

3. Transfer
Power System
Stability Assessment

Converter System
Fault Diagnosis . ' ' ,._____.:____ ‘

Masked-Load Learning Model || Learning Model || Learning Model I Knowledge j‘ Learning Model

Forecasting ——————————

== - & 1
Ul ofrseeie UL Convirsg N b
ran arhing | Same tasks onl so ce | CTTTTTETETETE T m T
I andtargetdomains j_r-=-----—=—————---—-—-—-—-—-—-————-—--
YeS gy bem e e 3 e —— - 1 I
R — - Ng" | _ Inductive Transfer Leaming | 2 »
I Same source and target 1 ' c
| marginal distribution | : S |
S i ] e e 1 )
N\ Y§’ | Transactive Transfer Learning ! :' :
(o) [ ——— -
I Same tasks on source i I % :
I and target domains 1 | c !
J S e e e 1 o !
m: Unsupervised Transfer Learning ! = :
|
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B Transfer Learning — Strategies

2. Introduction

A. Instance-based Transfer Learning

* Principle: select or reweight instance that are close to the target (instance weighting)
« Advantage/Suitability: simple implementation, domains differ only in marginal distributions
» Limitations: weight is unknown and difficult to be obtained

B. Feature-based Transfer Learning

» Principle: find the common latent features and use them as a bridge to transfer knowledge

Yf tr Tw ini@ rginal/ ili' Hﬂrizﬂj\zrie preserve
u pans x‘mnt I cture t@cmynr g ponde n features

» Advantage/Suitability : transfer between different feature spaces

« Limitations: negative transfer

C. Parameter-based Transfer Learning

» Principle: individual models for related tasks share some parameters or prior distributions
of hyperparameters

« Advantage/Suitability: same task, same distribution of source and target domain

2924 NANYANG « Limitation: transferred parameter selection
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% UNIVERSITY F. Zhuang et al., “A comprehensive survey on transfer learning,” Proc. IEEE, vol. 109, no. 1, pp. 43-76, Jan. 2021. 9




1. Background [1] Transfer Learning for Power System Stability Assessment with Unlearned Faults

2. Introduction ' broblem descriptions: !
------------- cl=——=——="="=—"—"—. | Problem descriptions:

Ve -
! Hismricg' DSA ' Real-time Measure ment « For pre-fault SA, one model is trained for one fault.
3. Transfer Database | e _
: v * Only a limit number of faults are considered.
* For practical application, unknown potential faults may
No

|

|
I |
I
I |
| |

II happen.
: I

VRS el L How to use one model to assess many different potential

|
|
[ 1
|
[
|
I
1

(Power Generation, Load Demand,
Bus Voltage Magnitudes)

Trained Fault ?
Yes

I

I

Power System I
Stability Assessment |
Converter System ; v |
I

I

I

Feature Selection

Fault Diagnosis Source Domain

Masked-Load ' Labeled Training Data
. (Known Fault Condition)

Unlabeled Testing Data unknown faults?

(Unforeseen Fault Condition)

Forecasting

»

Transfer learning:

>

\ 4

« SA model is a classifier based on hybrid ensemble model.

|

|

|

|

|

|

|

|

|

|

|

|

|

|

. |
|

. |
- * RELIEF-FK algerithpasi e select the critical features. :
| Flgzit r formaati [ adaptation matrix via:
an :

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Feature Transformation

| N Teiseo

Hybrid Ensemble | ——— minl g argina conditional  distribution
. Minimizé Distribution O .
ELM RvEL || | | , differences (MMD) between the unknown features and the
o [ Marginal | | Conditional || | | ! known features. 2
2
: 1 1 21 1
Classifier I v I MMDz(DS,Dt):H—Zf(xsi)__zf(xti) +2 1= 2 fo)-—= 2 f(x)
| > DSA Model |1 s M= o1 | Me < Me et
OR . | 1
: Byproduct:
Predictor b — I yp_ _
L Final DSA Result | 1 * Using one model to assess many potential faults.
-1 : :
L] v | 1 » The correlation between different faults can be revealed,
| Activate Preventive Control i 1 thus different faults can be aggregated as one.
. _._offine _ _ ;' _ onine_ _ _ o
ket NANYANG T 1
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Unlearned Faults,” IEEE Transactions on Power Systems, 2019.




Online Testing Results

3. Transfer

[ Fauit 1 |:|Fault2 -Fault3 I Fauit 4 [ Fauit 5 [lFault 6 -Fault 7 I:lFaultB |

100 - |

® Power System
Stability Assessment

Accuracy (%)
& ]
| |

w
a
!

F3=>
(a) each of fault is transferred to the remaining 7 faults

02"
Fl=>  F2=> F4=> F5=> F6=> F7 = F8 =>

METHODS
Method Average
Accuracy
.Ongmal DSA Mode@ 22 250
without Transfer Learning
Proposed method 97.27%
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Unlearned Faults,” IEEE Transactions on Power Systems, 2019.
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[1] Transfer Learning for Power System Stability Assessment with Unlearned Faults

feat © IncremZMTU}hl Q:Sbfeatyurii ia v

C. Ren and Y. Xu “Transfer Learning-Based Power System Online Dynamic Security Assessment: Using One Model to Assess Many

EFauit1 [ IFauitz [ Faut 3 [ Fault 4 [ Fault 5 [IFault 6 [_1Fault7 [__]Faults |
I T T T I T

=>F1 =>F2 =>F3 =>F4 =>F5 =>F6 => F7 => F§
(b) each of 7 faults is transferred to the remaining 1 fault

leferent structure of the incremental broad learning for (a) Increment of enhancement hldden nodes, (b) Increment of
eW tgaini

100%

99.5%
F7 99.0%
F6 98.5%
F5 98.0%
F4 97.5%
F3 97.0%

96.5%
F2

96.0%
F1

95.5%

F1 F2 F3 F4 F5 F6 F7 F8
Mutual Transfer Accuracy Matrix
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[2] Transfer Learning for Power System Stability Assessment with Unlearned Faults

and Missing Data

Input: s Output;
n?gcvif € Domain & Deep Feature | Invariant = A A
oo (Historical Bl B Feature v = Class |
ySter Data) Vector f* .= Labely Training Process
Operating =% o= -
Variables ) Forward Propagation
e.g., Power P i ——
(Ge%eration/ Domain Reversal > ?Z?e?lg =
4 F-- Target Invariant Gradient Training Process
Load, an Domain @ Feature Layer Back Propagation
Bus Voltage (Real-time Vector f! R() | Loss of Dy
Magnitude, Data) as Eq.(2)
etc) ) Ve _— Application Process
======== =>

YanINTOYCoBVRGRSO0E

« In practice, the unlearned fault with incomplete data may occur at the same time. Under this scenario, the
above feature-based TL method and GAN-based method will be ineffective, since the incomplete data inputs
are from the unlearned faults.

Principle of adversarial training:

1) Feature learning to extract the common impact features of two domains in one feature space from the input
data for different faults, named domain-invariant features; 2) by fooling the domain discriminator with such
features, the distribution of source domain and target domain becomes more similar; 3) the SA classifier trained
by source domain can be used for unlabeled instances in target domain.

» The feature learning stage can also extract the domain-invariant features by incomplete target domain data,
hence the proposed method can also accurately work with missing data.

C. Ren and Y. Xu, “An Integrated Transfer Learning Method for Power System Dynamic Security Assessment for Unlearned Faults |9
with Missing Data,” IEEE Trans. Power Syst., 2021.



1. Background [2] Transfer Learning for Power System Stability Assessment with Unlearned Faults
and Missing Data

2. Introduction

99 . 99 99
3. Transfer o R R R Het DA S S
® Power System gg: z; o = :: | L
Stability Assessment s ) @ @ Q = 0T g n= - B H @ @ E @
] s + ] s 1
® Converter System ° ] ] Lot T T
Fault Diagnosis %0 Fi—- F2— F3~ F4~ F5- F6~ F7—  F8— * F1— F2— F3— F4— F5—- F6— F7— F8-— o F1— F2— F3— F4—~ F5— F6—~ F7— F8—

(a) complete target domain (b) missing 12.5% target domain (c) missing 25% target domain
Masked-Load

Forecasting Figure. Testing results of the proposed TL method. (a) complete target domain data; (b) 12.5% missing target
domain data; (c) 25% missing target domain data.

TABLEI
AVERAGE DSA PERFORMANCE OF DIFFERENT METHODS.
‘ =~y 71 v ™+ 1 Fiaa Bs mance on target
u 1 ua ] 19p2 71 a ] a' r I h gomplete data
P e 5 4 pecificity| Fl-score
o) o) Without Ensemble learning | 82.25% 90.59% 84.14% 85.66%
o-1 o-1 LSTM 85.76% | 92.03% | 86.06% | 88.70%
Fl-score Fl-score
ks FN ™ £ FN ™ TL- Ref [2] 97.27% | 9881% | 97.81% | 97.89%
2 2 based | Proposed method | 97.68% | 99.18% | 98.48% 98.21%
o 95.44% | 97.16% | 96.04% o 95.14% | 96.95% | 95.77%
recall |specificity] accuracy recall [specificity] accuracy TABLE Il
AVERAGE DSA ACCURACY OF DIFFERENT METHODS.
1 -1 1 -1
ground truth label ground truth label Average DSA accuracy on target
(a) (b) Method domain with the incomplete data

) ) ) o 12.5% missing data| 25% missing data
Figure. Confusion Matrix of (a) 12.5% missing target Without TL (e.g., DT, LSTM) X X
domain data; (b) 25% missing target domain data. TL- Ref. [2] a X

based | Proposed method 96.04% 95.77%

& NANYANG
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C. Ren and Y. Xu, “An Integrated Transfer Learning Method for Power System Dynamic Security Assessment for Unlearned Faults |3
with Missing Data,” IEEE Trans. Power Syst., 2021.




[3] Transfer Learning for Open-Circuit Fault Diagnosis of Different Inverter Systems

Offline !

3. Transfer training |
® Converter System Online E
Fault Diagnosis application i

O The diagnostic model is trained by a fault database of a specific inverter system
O Only work for the corresponding system but not for an unlearned inverter system

' Sufficient e XN T e, f‘””:y
Labeled Data : 100 ] il
[ M + 0 100 200 300 400 500 o oo 200 300 400 500 0 100 200 300 400 500 0 100 a0 a0 w00 00
sampling points sampling points sampling points sampling points
Insufficient S
4 J‘ I stem A System B
A‘i} Aﬁ} jfal Unlabeled Data .---------Y ................. P —— X .................

1 1
g 1 I H
Target e § Learming i labeled source dataset | I : unlabeled target dataset
1 1 1

I

I

I

I

I

I

I

I

e Ds = {(Xs, Ysi D, = {X;
I @ @ ‘ Diagnostic Knowledge ..________S___{_(__S_"_)_/f'zl ______ : L-----------E--;{-Hl ..........
: of Target System ‘

I

I

I

I

I

I

I

"@ Diagnose Extract diagnostic knowledge of the target system
{1} ﬂ} T . Online O xand x, y and y, belong to the same space
— - Sampled Data O The marginal, conditional distribution of source, target data are
different, i.e. P4(X.) # Py(Xy), Ps(Xslys) # P(XlYy)

TECHNOLOGIC A L |5
% UNIVERSITY Y. Xia and Y. Xu, “A Transferrable Data-Driven Method for IGBT Open-Circuit Fault Diagnosis in Three-Phase Inverters,” |IEEE Trans. 14
Power Electron., 2021.




[3] Transfer Learning for Open-Circuit Fault Diagnosis of Different Inverter Systems

——————— I .
! offline -: Feature !  Model adaptation | -I:
I I I« Minimize distribution ) I
3. Transfer | stage __'_egmmg ‘ m—) =, iveraence ! |
"""""" I

I A== A 4
® Converter System 1 Online Final Diagnostic
Fault Diagnosis | stage Result

: 1. Feature Transformation : 2. Model Adaptation
| > Pre-process the training and testing data by ' 1 > Minimize the dlstrlbution divergence between source and target

integrati gthem |nto re d ta: .
1) ran A ub&i I | d
eod SI ern I |sEse xtract C' ( +b) P (up A ,3)

' the path between the two ubspaces
2) MMD (evaluate the distribution dlvergence between two systems)

|
H=[X,U, RU,] d u i
% {z z}[u RT} 4=909 =Hix DZ(QS,Q1)=H%Zf(qsi)—%zf(qt. ST @) T @)

2 " Yps
CQEQ CQlGQI

1

1

1
: 1

1
1 1
1 0.04 1
: 40 0.02 I

20
1
0| 0

I 20 0.02 I
I ’ 1
| ‘ 004, |
1 1
1 1
1 1
1 1
1 1
1 1
1 1

3) Optimize B (output weight)

¢ =argmin(J + D*(Q,,Q)+R(Q.Q)) | optimization problem 6
: 0 = arg min(”(Y -ﬂTP)E”2 +tr(ﬁTPMPﬂ)+tr(ﬂTPLPﬂ))
100| ﬂ
0 0 . 4 T ——
Training MMD Laplacian regularization
ol loss function minimization {{ (improve manifold feature)

rrrrrrrr

&bt NANYANG
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% UNIVERSITY Y. Xia and Y. Xu, “A Transferrable Data-Driven Method for IGBT Open-Circuit Fault Diagnosis in Three-Phase Inverters,” |IEEE Trans. 15
Power Electron., 2021.
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[3] Transfer Learning for Open-Circuit Fault Diagnosis of Different Inverter Systems

| : |
Offline Test Results . : : .
I Comparison with Other Intelligent Algorithms :
: > n practical application, a comprehensive target dataset may not be available "
] Transfer | » A minibatch as target dataset is selected covering one or several fault labels Methodology Without With |
° 1~ ) normalization  normalization !
1 Average Test Accuracy Performance under Different Target and Test Datasets 46.73 % 55.58 % :
| System B 55.70 % 6279% |
® Converter System I Target Dataset Test Dataset accuracy 24.12 % 64.79 % I
Fault Diaanosis ! No transfer learning {Label=1~22} 62.79 % 43.97 % - 52.07 % :
g ! 60% of {Label=1} 40% of {Label=1}, {Label=2~22}  82.82 % F:;;f;i’ﬁ;ff L0 U ,
— — —a_ 0

I 60% of {Label=1, 2} 40% of {Label=1,2}, {Label=3~22}  83.36 % ELM/RVEL ensemble 64.42 % :
: Labeled 6600 60% of {Label=1~7} 40% of {Label=1~7}, {Label=8~22} 87.05 % EET + ReliefF + RVFL - |
| LEWSIERIGEZZE 609 of {Label=1, 2, 5, 11, 40% of {Label=1, 2, 5, 11, 19}, 87,06 04 ensemble S I
1 labels 19} {Label=3~4, 6~10, 12~18, 20~22} ' 0 Proposed method 88.53 % 1
' 60%jofgLabel , 0% el=1~13,16~20}, ® . . & & e !
{LBbel=1 9 h tAv : @ﬂndomly selected target |
60% of {LabBel=1422} U 4 {m:pz}y r| an N o I
|
! D : T ] :
& . a ib o : - : : K / : 1

| < o ch1 i / ‘ Chi ¥t
aspberry Pi W i T A5 . . ! % o i h A !
: IR perry P13 I S| = Diagnostic  cus ‘***‘ g Cha ALK AN KAt N7 i
L5 = A : : : © Output label = : : : : : 1
| S s ! Wk —d = results © Outputlabel =10 ou 't‘l'aﬁbd' o Outputlabel=1 : : A[]: |
1 . o y _ . ”_| L ¢ f ¢ putpqtlabel 15 |
: o Ch1/2/3:400A/div, Ch4:5/div, Time:20ms/div | : o Chi/2/3:400A/div, Cha5/div, Time20ms/div | 1
1 ‘ I I ‘ : ‘ I ‘ ‘ ! / End gof accgalerat!ion ‘ ! ‘ :

1 LTI
I Under :
! | Opal-RT OP4510 Simulator 1 Different |
! 1 el il (VR speeds !
I Experimental platform PR 2 SN Ly vy !
NANYANG I O R T chaBn Tro B | M aTB:200A . ChaBioiy. Tims domlaiv | :

| .

TECHNOLOGICAL
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Y. Xia and Y. Xu, “A Transferrable Data-Driven Method for IGBT Open-Circuit Fault Diagnosis in Three-Phase Inverters,” IEEE Trans. 16
Power Electron., 2021.
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[4] Transfer Learning for Fault Diagnosis of Multiple Inverters in a Noisy Microgrid

-

| DG1 |
| T, T3 T5 |
[
: DC ::__WW\_: AC Bus
i | Source -t VWSS
[ L
[ Ts Te ‘K'} T2 ‘K'} [T :
: : Load 1
I Three-phase inverter LC filter Line B
T TS — oo ———————— - Load 2
DGN | ||
Ty Ts Ts |
DC S SRS |
. g

T, Te{'}Tz{'} TIT

LC filter Line

|
|
|
|
|
| | Source
|
|
|
|
|

Three-phase inverter

TABLE 1.1 FAULT LABELS OF FAULTY INVERTER LOCALIZATION

Faulty Inverter Label Faulty Inverter Label
No fault 1
DG 1 2 DG N-1 N
DG 2 3 DG N N+1
TABLE 1.2 FAULT LABELS OF SWITCH FAULT CLASSIFICATION
Faulty Switch Label Faulty Switch Label
No fault 1 T, 5
T, 2 T 6
T, 3 T 7

U Yan. (N Copyright. 2024

» Each fault label indicates a specific status of fault condition (faulty inverter, faulty switch)

4 Diagnose

One trained classifier may only work in a specific inverter
>>> transferability of data-driven models

Diagnostic
MT":fg', gfr labeled source dataset D, = {(Xs;, Y<i)} _(i =1,2,...,Ng)
Inverter labeled target dataset Dy = {(X7j, yr)} =1, 2, ..., Ny)

I @ Ns >> N; (limited number of labeled target data)

» Diagnostic . . .
el Diagnostic knowledge of the target inverter

Y. Xia, Y. Xu, and N. Zhou, “A Transferrable and Noise-Tolerant Data-Driven Method for Inverter Open-Circuit Fault Diagnosis in

Microgrids,” IEEE Trans. Ind. Electron., 2023.

17




1. Background [4] Transfer Learning for Fault Diagnosis of Multiple Inverters in a Noisy Microgrid

2. Introduction

| |
’ N |
: | Eigen- | ol Sl Switch Fault = !
| < :decqmposition ! | ! UGS 'F'_I'r_au_nl_na 7’ Classifier 1 !
3. Transfer | [ -! + ::gi;t\:glue | : N Target | Target Dataset 1 by | !
N D I N Inverter 1 DAELM
Power System . G | | Trainingby | L ocatisation Model 3 | | | DR ) - s Faut | |
HH [ ' ORI bl | arget Target Dataset 2 [
Stability Assessment | ] Uﬂﬂﬂw 1 EM | 1 > o0 Clasifer2 | |
S Emm e e e e | eoe cee
Converter System S L Il PR
Fault Diagnosis e il
Masked-Load | i EAi?]‘;T;I/ZLL;e ' Inverter Fault Localization | | Switch Fault Classification : i
- I !
Forecasting g, A 1 - | | M DG 1 | e » !
: —> <! W .: Localization Model 1 N\ oo Making N Switch Fault Classifier 1 \ | :
— V2, F)2 =1 1 1 | |
! —> éi —'> Localization Model 2 Identify the Faulty : : DG 2--> switch Fault Classifier 2 + ;| Switch i |
| VaPs S Inverter . 7 Fault | | !
W Inverte 3 calization Modgl 3 : Switcl assifi Label N
: : | |
K - 3 | . !
I — i | (\Features N I—» Localizatioh Model N < ! 9 switch FaultClassiiier N / | :
|
|
|

an ELM-based initial classifier is trained (D, = {(Xg;, Y5)})  To solve, the partial derivatives dL/9B, dL/deg, oL/d¢,
f(p) =L @(ap +b)=pH >>> Optimize B by DAELM dL/dys, dL/dy are set as zero:

Model Adaptation Objective: oLI10f=0— f=yHs +yH;
1[0 e Ns oo Ne oo el =ti—B-Hy, i=12,..,N OLldeg =0y =1 -&!
min = +r ) el +6- ) |let _ _
p 2(”'8” * ,Zﬂ:” S” T ]Z:;” T” j t—f-Hl, j=12,..,N, OLl0e =0y, =1 -&f
. o . oL/oy, =0 -Hy -t =0
To find B fit in both source and target domain. 75 =02 Hs L e
o 1 ) Ns o N oL/oy, =0—> B-H, -t +& =0
i _ 1 ]
N R L DY S DY B SolUtion: 7. —(8-He e -HI-HL (T HL)
29 1S rO NANYANG L f t i=1 j=1 Vs s~ T S S S
EORORS oss function o S B
TECHNOLOGICAL ~7s(B-Hy —ti+e) -1 (B-HI -t +4]) B=(rt-HL+1 -H, -HT) (11, -Hg -HL 1, -H, -HT)
% UNIVERSITY Y. Xia, Y. Xu, and N. Zhou, “A Transferrable and Noise-Tolerant Data-Driven Method for Inverter Open-Circuit Fault Diagnosis in 18
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1. Background [4] Transfer Learning for Fault Diagnosis of Multiple Inverters in a Noisy Microgrid

2. Introduction @ @ DG 3

PCC
3. T f ﬁ | ~— ¢ 1 ]2 |4 s *7 °s
© ransrer Main Switch P
® Power System Grid 3 5 9
.y
Stability Assessment .5
® Converter System ® Node
Fault Diagnosis Electrical lines DG 4
g’laSkedt_,Load Figure. The topology of the 13-bus microgrid system. Figure. Real-time experimental test based on Opal-RT.
orecastin
g TABLE TEST ACCURACY PERFORMANCE UNDER DIFFERENT TARGET DATASETS r~——rm P
chi Acii P.p Fault occurs ’ chl K Fault occurs
Inverter 1 Inverter 3 Testing G WM PONETT P Ch2 e g N
urce Dataset rget D Test Dat accuracy -
out Transf Tth:rieehfse current of Output label = 4
u ing) Output label = LK
80| cesof {l!abel= . KKK
30 instances of {Label=1 : i B RN R
2100 instances | 30 instances of ELabelzzi 1400 79.81 % [ Chi/2/3/4:10kW/div, Ch5:2/div, Time:40ms/div \ \ Ch1/2/3:50A/div, Chd:2/div, Time:20ms/div |
ith 7 labels 30 instances of {Label=1} TS EMEES i i i i i
wi g ) gl 7 labels 92,045 Real-time experimental results when inverter 1 is under T; open -
IS ER R e, 04% 1 (circuit fault (a) faulty inverter localization (b) switch fault classification.
20 instances of {Label=5}.
10 instances of
{Label=1} ~ {Label=7} 99.64 % chi- ‘/BUS voltage V3 V2 Vs Vs ’;;V - _ Fault occurs ot i
Ch2 . » L r—_— M '. I ~.__ L i
TABLE COMPARISON WITH OTHER INTELLIGENT ALGORITHMS chs 'r-K|FauIt ecure sV gﬂg TESCASVAURT WY,
Methodology Average accuracy cha ! : Output label =5 X ,an:,r:fteﬁhfse currentat ™ It xRR
ELM 70.41 % : Lgomedp T T Output label = 1 Output-labeh=-
DT 87.29 % " Outputiabel =1 o KKK
ELM ensemble 86.21 % [ Ch1/2/3/4:1V/div, Ch4:2/div, Time:200ms/div | [ Ch1/2/3:20Aldiv, Cha:2/div, Time:20ms/div__|
ReliefF + ELM/RVFL ensemble 89.71 % _ _ ) _
%5 NANYANG PCA + BN 88.07 % Real-time experimental results when inverter 4 is under T4 open -
T TECHNOLOGICAL Proposed transferrable method 94.43 % circuit fault (a) faulty inverter localization (b) switch fault classification.
% UNIVERSITY Y. Xia, Y. Xu, and N. Zhou, “A Transferrable and Noise-Tolerant Data-Driven Method for Inverter Open-Circuit Fault Diagnosis in 19

Microgrids,” IEEE Trans. Ind. Electron., 2023.



[5] Transfer Learning for Forecasting Masked-Load due to Behind-the-Meter DERs

Load demand is being masked by distributed energy resources (DERS)

|

£ o Distributed generation (DG): rooftop PV, small wind turbine... : * !Behlnd _the-meter (BTW) :

3. Transfer o _ ' installation !
o Energy storage system (ESS): residential batteries, UPS... '« Continuous growing with |

« Flexible loads: Electric vehicles (EV), smart appliances... . less visibility !

® Masked-Load
Forecasting

U}, Gopyright=20

¥ , Voltage regulators
Substation (SVR. SVC etc)

https://www.waseda.jp

2000 T T T T T ‘ T T T 18000 T T ‘

T T
8000 16000 - ——Native demand
0001 1 jao00} Measured load{metering data)
geoou | 1 g voonn | LV charging
Z =
2 s000 < 10000
2 :
£ 000 ——Native demand g oo
o s Gy = g F 1 al: 5
&5 o K S ao00 Measured load(metering data) | | 5 gooo - :
(2 )\.)[ LZ N A N YA N G o 2000 — PV generation © 2000
TECHNOLOGICAL - |
U N IV E RS ITY Do Ie0 w00 600 800 1000 1200 1400 1600 1800 2000 2200 2500 f00 200 400 600 800 1000 1200 1400 1680 1800 20:00 22:00 23:00 20
. . time time
(a) Load is masked by PV generation: (b) Load is masked by EV charging:



. Background [5] Transfer Learning for Forecasting Masked-Load due to Behind-the-Meter DERs

. Introduction g

Problem descriptions:
e Residential load is masked by a mix of different distributed energy resources (DERS);

1
1
T fer |

o UG : e DERSs are installed behind the meter, thus information about them are not available;
:
1
1

Power System : : S :
StabilityyAssessment e Only available datasets for supervised learning is historical unmasked load and present

Converter System masked load.

Fault Diagnosis [[£NN U
Masked-Load

Forecasting

i Find an input-output
1 pattern g(-) for masked
s | load forecasting:

Ds = {(x5, )},

« Small dataset, : yr = g(xr)
. La;fgej datt?stet _ el unsupervised ' with knowledge in Dg
UL SR L . Since DERSs in frequent ' and Dr.

developments

Note that D¢ and Dy has different but related relationship:
Xg IS latent in x7, since xy = xg + DERS

! (Transfer learning)

b o o o e o o e e e e o e e e o

&0t %> NANYANG

T ECHN O L O G C A L | D,
UNIVERSITY 21



1. Background [5] Transfer Learning for Forecasting Masked-Load due to Behind-the-Meter DERSs

eesesssssssssssssessssaannnnans B eeEsssssssssssassssssssssssassssssssssseassstaaannaaannnan %R R N R R R R R R R R R R RN E R R R R EE R -

e i ¢ | Outcome data:
2. Introduction S o
: : Outcome A S = ? y'd:,r,:;,g'
Input data: I i predictor — =i
3. Transfer Detnyd)|i | Xs | ——— Featurs L I L f Offine
. Dy~Ger ) Hlstoncal Gimc serics data | SXHBCIOT & (hmoes one Forecasting Tantuwanl
Power System - i when load is not masked Gf : outc;);n ;Szaud loss = Domain Propagation
Stability Assessment time serics  L; E g ; G | discriminator P—
outcome. g - : | R e e s g - @ 3 Offline
Converter System v : | =" el R b o :  Backward
o o outcome at | : T | —————» form source and *I i (Discriminate [, fr Discriminati : o
Fault Diagnosis moment i o \_ target domains.) ) ol farm e | wcnlmmanon i Training
e ds :  Current time series data : : . domains. 0SS : ¢ == -
MaSked-Load ﬂﬁcrdxycnds_ § when load is masked : H i 2 ! B —
Forecastin Sub-model 1: feature extractor Sub-model 2: predictor Sub-model 3: discriminator Online
g9 ; « FExtract invariant feature vectors. « Forecast outcome based « Discriminate features into Application
--------------------------------- on invariant feames. soume or talget domains-
Y serf[a-tr} omaln Adaptatign Neural Netz 2
u-Yan OPYEIGE (24 ,
: Firstly, feature vectors fs and fr ar extracted . Y Updafe parameters as: |
i from Ds and Dy. Then, a domain discriminator will ' ! P P : I
N T 0L ked |
L i , i, . 6 =g, 9Ly * Dgisunmaskedload
discriminate fs and f; into Dg or Dr. Intuitively, 1o Ay 26, : |
l C o : T Lo * D7 is masked load
1 when a discriminator fails to distinguish fgand fr | | . Y az:d. !
| from each other, that means f; and f; are in the ' d = Hd Mg, !
: similar distribution. Based on this idea, a feature |, , » G} = Gr — A5 Zé + Afz% :
| extractor is trained against the discriminator, e A A I
! aiming to fool the discriminator. As a result, fgand1 |- ------- ittt
I fr has similar data distribution, and f; could be | ! Online application _ I
, compatible to a forecasting model which is trained ! * Input data from target domain, xr _ !
I with fs. ' 1+ Inputx; to feature extractor then outcome predictor, |
ST 1 I |
2@ 3% NANYANG L v, __caeuaey. .
= TECHNOLOGICAL
Y —
y ’\, UNIVERSITY Z.Zhou, Y. Xu, and C. Ren, "A Transfer Learning Method for Forecasting Masked-Load With Behind-the-Meter Distributed Energy 29

Resources," IEEE Trans. Smart Grid, 2022.



1. Background [5] Transfer Learning for Forecasting Masked-Load due to Behind-the-Meter DERSs

I -
: Test Settings _ _ When DER penetration level increases:
¢ Assume load is masked by a mix of DERs (PV, EV)  “duck curve” of masked load becomes more apparent;

¢ To mimic dynamic development of DERs, difference between source data and target data are larger;
different penetration of target datasets are tested. 10710° , ‘
Datasetry= Datasets — py * PV + p, x EV M ik eneton

8 T2: 20% penctration

2. Introduction

3. Transfer

1

1

1

1
Power System !
Stability Assessment :
Converter System "
:

1

1

1

1

1

1

1

——T3: 30% penetration

~———Td: 40% penetration

ave (pZ *EV) 0/ — 1 0 2 0 1 0 ~—T5: 50% penetration

Yo = [ 0%, 20%, ..., 100 /0] 6 —T: 60% ponctmion

———T7: 70% penetration

———T8: 80% penetration

T9: 90% penetration
——T10: 100% penetration

ave(p1*PV) 0

0
ave(Datasets) * ’ ave(Datagets)

p1, P2 adjust

Fault Diagnosis
Masked-Load

. e Benchmark models:
Forecasting

1. Unmasked-load to forecast masked-load: src — tgt
2. Masked-load to forecast masked-load: tgt — tgt

Outcome(MW)

25
Time moment

NMAE (%) in Different DERs Penetrations Levels At the lower DER

Models - - - - - - - - - - penetration levels,
10% 20% 30% 40% 50% 60% 70% 80% 90% 100% accuracy improvement by

1 1228 1797 21.96 2516 27.72 29.85 3143 32.67 33.73 34.48 TL is not significant since

40 I Benchmark model 1: source to target T T T T
[ Benchmark model2: target to target

*1: Benchmark model 1: src > tgt & |EdProposed MLF model: DANN
20

not changed much). With
growing DER levels,

24
*2: Benchmark model 2: tgt —» tgt < effectiveness of TF is more
ket NANYANG *3: Proposed model: DANN and more evident.

TECHNOLOGICAL L 10% 20% 30% 40% 50% 60% 70% 80% _90% _ 100% .

UNIVERSITY [ S, e e T el | e A gt e S T T T T T T
Z. Zhou, Y. Xu, and C. Ren, "A Transfer Learning Method for Forecasting Masked-Load With Behind-the-Meter Distributed Energy 23
Resources," |IEEE Trans. Smart Grid, 2022.
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