• • • • • • • • • • •

Transfer Learning for Smart Grid Xu Yan (Pata) Analytics ht 2024

Dr Yan Xu Cham Tao Soon Professor in Engineering Director, Center for Power Engineering Nanyang Technological University Singapore

- Smart grid & data resources
- Advanced data-analytics for smart grid

Conventional machine learning
 Xu Yan (NTU) Copyright 2024

Transfer learning:

- Power system stability assessment → from learned faults to unlearned faults
- Power converter fault diagnosis → from learned converters to unlearned converters
- Masked-load forecasting → from original load to maskedload by distributed energy resources (DERs)

What is a "Smart Grid"?

2. Introduction

3. Transfer

- Power System
 Stability Assessment
- Converter System Fault Diagnosis
- Masked-Load Forecasting

Smart Grid: a modernized power grid with high-level renewables, more distributed energy resources, and wide-spread deployments of advanced ICT

NetZero & Carbon Neutrality

2. Introduction

3. Transfer

- Power System
 Stability Assessment
- Converter System Fault Diagnosis
- Masked-Load Forecasting

Data Resources in Smart Grid

Wide-spread deployments of advanced ICT can provide more data and information about the power system at different levels

How to make use of these data to support power system's monitoring, operation & control ?

2. Introduction

- 3. Transfer
- Power System
 Stability Assessment
- Converter System Fault Diagnosis
- Masked-Load
 Forecasting

Advanced AI and Data-Analytics for Smart Grid

2. Introduction

- 3. Transfer
- Power System
 Stability Assessment
- Converter System Fault Diagnosis
- Masked-Load Forecasting

Transfer Learning – Notations and Definitions

- **Domain** : $D = \{X, P(X)\}$, where X is the feature space $X = \{x_1, x_2, ..., x_n\}$ and P(X) is the marginal probability distribution.
- *Task* : $T = \{Y, f(\cdot)\}\)$, where *Y* is the label space and $f(\cdot)$ is the objective predictive function, which is not observed but can be learned from the training data, and consists of pairs (x_i, y_i) , where $x_i \in X$ and $y_i \in Y$. The function $f(\cdot)$ can predict the corresponding label, f(x), of a new instance *x*.
- *Source domain* : D_s = {(x_{si}, y_{si})}, (i = 1, 2, ..., n), where x_{si} ∈ X_S and y_{si} ∈ Y_S
 Target domain : D_t = {(x_{ti}, y_{ti})}, (i = 1, 2, ..., m), where x_{ti} ∈ X_T and y_{ti} ∈ Y_T (in most cases, m<<n)
- Transfer Learning (TL): Given a source domain D_s and its learning task T_s , a target domain D_t and its learning task T_T , TL aims to help improve the learning of the target predictive function $f_t(\cdot)$ in D_t using the knowledge in D_s and T_s , where $D_s \neq D_t$, or $T_s \neq T_T$.
- $D_s \neq D_t$ implies that either the features are different between the two datasets $X_s \neq X_T$, or their marginal distributions are different $P_s(X) \neq P_T(X)$
- $T_s \neq T_T$ implies that $Y_S \neq Y_T$ or $P(Y_S | X_S) \neq P(Y_T | X_T)$

2. Introduction

- 3. Transfer
- Power System
 Stability Assessment
- Converter System Fault Diagnosis
- Masked-Load Forecasting

Transfer Learning – Illustration and Different Categories

2. Introduction

- 3. Transfer
- Power System
 Stability Assessment
- Converter System
 Fault Diagnosis
- Masked-Load Forecasting

Transfer Learning – Strategies

A. Instance-based Transfer Learning

- Principle: select or reweight instance that are close to the target (instance weighting)
- Advantage/Suitability: simple implementation, domains differ only in marginal distributions
- Limitations: weight is unknown and difficult to be obtained

B. Feature-based Transfer Learning

- Principle: find the common latent features and use them as a bridge to transfer knowledge
- (feature transformation), minimize marginal/conditional distribution difference preserve
- properties or potential structures of the data, find correspondence between features
- Advantage/Suitability : transfer between different feature spaces
- Limitations: negative transfer

C. Parameter-based Transfer Learning

- Principle: individual models for related tasks share some parameters or prior distributions of hyperparameters
- Advantage/Suitability: same task, same distribution of source and target domain
- Limitation: transferred parameter selection

[1] Transfer Learning for Power System Stability Assessment with Unlearned Faults

C. Ren and Y. Xu "Transfer Learning-Based Power System Online Dynamic Security Assessment: Using One Model to Assess Many Unlearned Faults," *IEEE Transactions on Power Systems*, 2019.

2. Introduction

3. Transfer

- Power System
 Stability Assessment
- Converter System Fault Diagnosis
- Masked-Load Forecasting

[1] Transfer Learning for Power System Stability Assessment with Unlearned Faults

Online Testing Results

Different structure of the incremental broad learning for (a) Increment of enhancement hidden nodes, (b) Increment of features, (c) Increment of enhancement hidden nodes, features, and new training instances

C. Ren and Y. Xu "Transfer Learning-Based Power System Online Dynamic Security Assessment: Using One Model to Assess Many Unlearned Faults," *IEEE Transactions on Power Systems*, 2019.

2. Introduction

3. Transfer

- Power System
 Stability Assessment
- Converter System Fault Diagnosis
- Masked-Load Forecasting

[2] Transfer Learning for Power System Stability Assessment with Unlearned Faults and Missing Data

Proposed adversarial training framework for knowledge transfer Problem description:

 In practice, the unlearned fault with incomplete data may occur at the same time. Under this scenario, the above feature-based TL method and GAN-based method will be ineffective, since the incomplete data inputs are from the unlearned faults.

Principle of adversarial training:

- 1) Feature learning to extract the common impact features of two domains in one feature space from the input data for different faults, named domain-invariant features; 2) by fooling the domain discriminator with such features, the distribution of source domain and target domain becomes more similar; 3) the SA classifier trained by source domain can be used for unlabeled instances in target domain.
- The feature learning stage can also extract the domain-invariant features by incomplete target domain data, hence the proposed method can also accurately work with missing data.

C. Ren and Y. Xu, "An Integrated Transfer Learning Method for Power System Dynamic Security Assessment for Unlearned Faults with Missing Data," *IEEE Trans. Power Syst.*, 2021.

2. Introduction

3. Transfer

- Power System **Stability Assessment**
- **Converter System Fault Diagnosis**
- Masked-Load Forecasting

[2] Transfer Learning for Power System Stability Assessment with Unlearned Faults and Missing Data

Figure. Testing results of the proposed TL method. (a) complete target domain data; (b) 12.5% missing target domain data; (c) 25% missing target domain data. TABLE I

Figure. Confusion Matrix of (a) 12.5% missing target domain data; (b) 25% missing target domain data.

AVERAGE DSA PERFORMANCE OF DIFFERENT METHODS.

ric	Method	Average DSA performance on target domain with the complete data					
12	J	accuracy	precision	specificity	F1-score		
Without TL	Ensemble learning	82.25%	90.59%	84.14%	85.66%		
	DT	78.84%	87.37%	78.53%	82.98%		
	LSTM	85.76%	92.03%	86.06%	88.70%		
TL-	Ref [2]	97.27%	98.81%	97.81%	97.89%		
based	Proposed method	<u>97.68%</u>	<u>99.18%</u>	<u>98.48%</u>	<u>98.21%</u>		

TABLE II AVERAGE DSA ACCURACY OF DIFFERENT METHODS.

Method		Average DSA accuracy on target domain with the incomplete data				
		12.5% missing data	25% missing data			
Without	TL (e.g., DT, LSTM)	×	×			
TL-	Ref. [2]	×	×			
based	Proposed method	96.04%	95.77%			

C. Ren and Y. Xu, "An Integrated Transfer Learning Method for Power System Dynamic Security Assessment for Unlearned Faults with Missing Data," IEEE Trans. Power Syst., 2021.

2. Introduction

3. Transfer

- Power System
 Stability Assessment
- Converter System Fault Diagnosis
- Masked-Load Forecasting

[3] Transfer Learning for Open-Circuit Fault Diagnosis of Different Inverter Systems

Y. Xia and Y. Xu, "A Transferrable Data-Driven Method for IGBT Open-Circuit Fault Diagnosis in Three-Phase Inverters," *IEEE Trans. Power Electron.*, 2021.

2. Introduction

3. Transfer

- **Power System Stability Assessment**
- **Converter System Fault Diagnosis**
- Masked-Load **Forecasting**

[3] Transfer Learning for Open-Circuit Fault Diagnosis of Different Inverter Systems

Y. Xia and Y. Xu, "A Transferrable Data-Driven Method for IGBT Open-Circuit Fault Diagnosis in Three-Phase Inverters," IEEE Trans. Power Electron., 2021.

2. Introduction

3. Transfer

- Power System
 Stability Assessment
- Converter System Fault Diagnosis
- Masked-Load Forecasting

[3] Transfer Learning for Open-Circuit Fault Diagnosis of Different Inverter Systems

Offline Test Results

- > In practical application, a comprehensive target dataset may not be available
- > A minibatch as target dataset is selected covering one or several fault labels

Average Test Accuracy Performance under Different Target and Test Datasets

System A System B Average Source Dataset **Target Dataset** Test Dataset accuracy No transfer learning {Label=1~22} 62.79 % 60% of {Label=1} 40% of {Label=1}, {Label=2~22} 82.82 % 60% of {Label=1, 2} 40% of {Label=1,2}, {Label=3~22} 83.36 % 60% of {Label=1~7} 87.05 % 40% of {Label=1~7}, {Label=8~22} Labeled 6600 samples with 22 60% of {Label=1, 2, 5, 11, 40% of {Label=1, 2, 5, 11, 19}. 87.06 % labels {Label=3~4, 6~10, 12~18, 20~22} 19} 60% of {Label=1~13 40% of {Label=1~13, 16~20}, 91.24 % {Label=14~15, 21~22} 16~20 60% of {Label=1~22 40% of {Label=1

oompanson with other intelligent Algorithms						
	Average accuracy					
Methodology	Without	With				
	normalization	normalization				
KNN	46.73 %	55.58 %				
ELM	55.70 %	62.79 %				
BN	24.12 %	64.79 %				
DT	43.97 %	52.07 %				
FFT + PCA + BN	46.3	6 %				
FFT + ReliefF +	64 42 %					
ELM/RVFL ensemble	07.72 /0					
FFT + ReliefF + RVFL	51.45 %					
ensemble						
Proposed method	88.53 %					

Comparison with Other Intelligent Algorithms

Real-Time Results

Y. Xia and Y. Xu, "A Transferrable Data-Driven Method for IGBT Open-Circuit Fault Diagnosis in Three-Phase Inverters," *IEEE Trans.* 16 *Power Electron.*, 2021.

2. Introduction

3. Transfer

- Power System
 Stability Assessment
- Converter System Fault Diagnosis
- Masked-Load Forecasting

[4]	Transfer	Learning for	Fault Diagnosis	of Multiple Inverters	in a Noisy Microgrid
-----	----------	--------------	-----------------	-----------------------	----------------------

Two-level multi-classification problem: locating the faulty inverters and diagnose the faults
 Each fault label indicates a specific status of fault condition (faulty inverter, faulty switch)

Y. Xia, Y. Xu, and N. Zhou, "A Transferrable and Noise-Tolerant Data-Driven Method for Inverter Open-Circuit Fault Diagnosis in Microgrids," *IEEE Trans. Ind. Electron.*, 2023.

2. Introduction

3. Transfer

Power System
 Stability Assessment

ANYANG

- Converter System Fault Diagnosis
- Masked-Load
 Forecasting

[4] Transfer Learning for Fault Diagnosis of Multiple Inverters in a Noisy Microgrid

an ELM-based initial classifier is trained $(D_s = \{(x_{Si}, y_{Si})\})$ $f(\rho) = \beta \cdot \varphi(\alpha \rho + b) = \beta H >>> Optimize \beta by DAELM$ <u>Model Adaptation Objective:</u>

$$\min_{\beta} \frac{1}{2} \left(\left\| \beta \right\|^{2} + r_{s} \cdot \sum_{i=1}^{N_{s}} \left\| \varepsilon_{s}^{i} \right\|^{2} + r_{T} \cdot \sum_{j=1}^{N_{T}} \left\| \varepsilon_{T}^{j} \right\|^{2} \right) \qquad \varepsilon_{s}^{i} = t_{s}^{i} - \beta \cdot \mathbf{H}_{s}^{i}, \ i = 1, 2, ..., N_{s} \\ \varepsilon_{T}^{j} = t_{T}^{j} - \beta \cdot \mathbf{H}_{T}^{j}, \ j = 1, 2, ..., N_{T}$$

To find β fit in both source and target domain.

$$L(\beta, \varepsilon_{s}^{i}, \varepsilon_{T}^{j}, \lambda_{s}, \lambda_{T}) = \frac{1}{2} \left(\|\beta\|^{2} + r_{s} \cdot \sum_{i=1}^{N_{s}} \|\varepsilon_{s}^{i}\|^{2} + r_{T} \cdot \sum_{j=1}^{N_{T}} \|\varepsilon_{T}^{j}\|^{2} \right)$$

Loss function
$$-\gamma_{s} \left(\beta \cdot \mathbf{H}_{s}^{i} - t_{s}^{i} + \varepsilon_{s}^{i} \right) - \gamma_{T} \left(\beta \cdot \mathbf{H}_{T}^{j} - t_{T}^{j} + \varepsilon_{T}^{j} \right)$$

To solve, the partial derivatives $\partial L/\partial \beta$, $\partial L/\partial \varepsilon_S$, $\partial L/\partial \varepsilon_T$, $\partial L/\partial \gamma_S$, $\partial L/\partial \gamma_T$ are set as zero:

$$\begin{cases} \partial L / \partial \beta = 0 \rightarrow \beta = \gamma_{S} \mathbf{H}_{S}^{\mathrm{T}} + \gamma_{S} \mathbf{H}_{T}^{\mathrm{T}} \\ \partial L / \partial \varepsilon_{S} = 0 \rightarrow \gamma_{S} = r_{S} \cdot \varepsilon_{S}^{\mathrm{T}} \\ \partial L / \partial \varepsilon_{T} = 0 \rightarrow \gamma_{T} = r_{T} \cdot \varepsilon_{T}^{\mathrm{T}} \\ \partial L / \partial \gamma_{S} = 0 \rightarrow \beta \cdot \mathbf{H}_{S} - t_{S} + \varepsilon_{S} = 0 \\ \partial L / \partial \gamma_{T} = 0 \rightarrow \beta \cdot \mathbf{H}_{T} - t_{T} + \varepsilon_{T} = 0 \end{cases}$$

Solution: $\gamma_{S} = (\beta \cdot \mathbf{H}_{S} - \gamma_{T} \cdot \mathbf{H}_{T}^{\mathrm{T}} \cdot \mathbf{H}_{S}) (\mathbf{H}_{S}^{\mathrm{T}} \cdot \mathbf{H}_{S})^{-1} \\ \beta = (r_{S} \cdot t_{S} \cdot \mathbf{H}_{S}^{\mathrm{T}} + r_{T} \cdot \mathbf{H}_{T} \cdot \mathbf{H}_{T}) (\mathbf{I} + r_{S} \cdot \mathbf{H}_{S} \cdot \mathbf{H}_{S}^{\mathrm{T}} + r_{T} \cdot \mathbf{H}_{T} \cdot \mathbf{H}_{T})^{-1} \end{cases}$

Y. Xia, Y. Xu, and N. Zhou, "A Transferrable and Noise-Tolerant Data-Driven Method for Inverter Open-Circuit Fault Diagnosis in Microgrids," *IEEE Trans. Ind. Electron.*, 2023.

18

2. Introduction

3. Transfer

- Power System
 Stability Assessment
- Converter System Fault Diagnosis
- Masked-Load
 Forecasting

Figure. The topology of the 13-bus microgrid system.

TABLE TEST ACCURACY PERFORMANCE UNDER DIFFERENT TARGET DATASETS

	Inverter 1	Inverter 3		Testing	
	Source Dataset	Target Dataset	Test Dataset	accuracy	
U	Yar	NA (without Transfer Learning) 80 instances of {Label=1}	J) C	60.07 % 7 <u>6.25 %</u>	
	2100 instances	30 instances of {Label=1},	1400	79.81 %	
	with 7 labels	30 instances of {Label=1}, 20 instances of {Label=3}, 20 instances of {Label=3}.	instances with 7 labels	92.04 %	
		10 instances of {Label=1} ~ {Label=7}		99.64 %	

TABLE COMPARISON WITH OTHER INTELLIGENT ALGORITHMS

Methodology	Average accuracy
ELM	70.41 %
DT	87.29 %
ELM ensemble	86.21 %
ReliefF + ELM/RVFL ensemble	89.71 %
PCA + BN	88.07 %
Proposed transferrable method	94.43 %

Figure. Real-time experimental test based on Opal-RT.

Real-time experimental results when inverter 1 is under T_3 open - circuit fault (a) faulty inverter localization (b) switch fault classification.

Real-time experimental results when inverter 4 is under T_6 open - circuit fault (a) faulty inverter localization (b) switch fault classification.

Y. Xia, Y. Xu, and N. Zhou, "A Transferrable and Noise-Tolerant Data-Driven Method for Inverter Open-Circuit Fault Diagnosis in Microgrids," *IEEE Trans. Ind. Electron.*, 2023.

[4] Transfer Learning for Fault Diagnosis of Multiple Inverters in a Noisy Microgrid

- 1. Background
- 2. Introduction

3. Transfer

- Power System Stability Assessment
- Converter System Fault Diagnosis
- Masked-Load Forecasting

[5] Transfer Learning for Forecasting Masked-Load due to Behind-the-Meter DERs

Load demand is being masked by distributed energy resources (DERs)

- Distributed generation (DG): rooftop PV, small wind turbine...
- Energy storage system (ESS): residential batteries, UPS...
- Flexible loads: Electric vehicles (EV), smart appliances...

- Behind-the-meter (BTW) installation
- Continuous growing with less visibility

PV generation

12:00

(a) Load is masked by PV generation:

2000

1000

0:00 2:00

Measured load is no longer merely native demand, as it contains DERs 16000 Native demand 8000 Measured load(metering data) 14000 7000 MU 12000 EV charging A 6000 4000 Native demand 8000 Measured load(metering data) 3000 6000

4000

2000

22:00 23:00 time 0:00 2:00

8:00 10:00 12:00 14:00 16:00

(b) Load is masked by EV charging:

23:00

2. Introduction

3. Transfer

- Power System Stability Assessment
- Converter System Fault Diagnosis
- Masked-Load Forecasting

[5] Transfer Learning for Forecasting Masked-Load due to Behind-the-Meter DERs

Problem descriptions:

- Residential load is masked by a mix of different distributed energy resources (DERs);
- DERs are installed behind the meter, thus information about them are not available;
- Only available datasets for supervised learning is **historical unmasked load** and **present masked load**.

2. Introduction

3. Transfer

- Power System
 Stability Assessment
- Converter System Fault Diagnosis
- Masked-Load Forecasting

[5] Transfer Learning for Forecasting Masked-Load due to Behind-the-Meter DERs

Proposed Framework: Domain Adaptation Neural Network (DANN)

Firstly, feature vectors f_S and f_T are extracted from D_S and D_T . Then, a domain discriminator will discriminate f_S and f_T into D_S or D_T . Intuitively, when a discriminator fails to distinguish f_S and f_T from each other, that means f_S and f_T are in the similar distribution. Based on this idea, a feature extractor is trained against the discriminator, aiming to fool the discriminator. As a result, f_S and f_T has similar data distribution, and f_T could be compatible to a forecasting model which is trained with f_S .

p p	Offline training: Backward training• Update parameters as:• $G'_y = G_y - \lambda_y \frac{\partial \mathcal{L}_y}{\partial G_y}$ • $G'_d = G_d - \lambda_d \frac{\partial \mathcal{L}_d}{\partial G_d}$ • $G'_d = G_f - \lambda_{f1} \frac{\partial \mathcal{L}_y}{\partial G_f} + \lambda_{f2} \frac{\partial \mathcal{L}_d}{\partial G_f}$
d d	 Online application Input data from target domain, x_T Input x_T to feature extractor then outcome predictor, calculate y_T.

Z. Zhou, Y. Xu, and C. Ren, "A Transfer Learning Method for Forecasting Masked-Load With Behind-the-Meter Distributed Energy Resources," *IEEE Trans. Smart Grid*, 2022.

- 1. Background
- 2. Introduction

3. Transfer

- Power System Stability Assessment
- Converter System **Fault Diagnosis**
- Masked-Load Forecasting

[5] Transfer Learning for Forecasting Masked-Load due to Behind-the-Meter DERs

Test Settings

- Assume load is masked by a mix of DERs (PV, EV)
- To mimic dynamic development of DERs, different penetration of target datasets are tested.

 $Dataset_{T} = Dataset_{S} - p_{1} * PV + p_{2} * EV$

$$p_1, p_2 adjust \frac{ave(p_1*PV)}{ave(Dataset_S)}\%, \frac{ave(p_2*EV)}{ave(Data_{set_S})}\% = [10\%, 20\%, ..., 100\%]$$

- Benchmark models:
- Unmasked-load to forecast masked-load: $src \rightarrow tgt$
- Masked-load to forecast masked-load: $tgt \rightarrow tgt$

When DER penetration level increases: "duck curve" of masked load becomes more apparent; difference between source data and target data are larger;

Test Results

Models	nMAE (%) in Different DERs Penetrations Levels									
	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
1	12.28	17.97	21.96	25.16	27.72	29.85	31.43	32.67	33.73	34.48
2	3.69	5.06	6.32	8.26	9.75	9.60	11.43	11.70	11.67	11.05
3	3.21	4.13	4.59	5.30	5.81	5.60	6.40	6.99	8.36	9.61
*1: Bench *2: Bench	mark mode mark mode	el 1: src \rightarrow el 2: tgt \rightarrow	tgt tgt	40 Bench Bench Propos	mark model1: sou mark model2: tan sed MLF model: I	rce to target get to target DANN				
*3: Proposed model: DANN					20% 30	× 40%	50% 60	% 70%	80% 9	0% 100%

At the lower DER penetration levels, accuracy improvement by TL is not significant since the load is just slighted masked (data distribution is not changed much). With growing DER levels, effectiveness of TF is more and more evident.

Z. Zhou, Y. Xu, and C. Ren, "A Transfer Learning Method for Forecasting Masked-Load With Behind-the-Meter Distributed Energy Resources," IEEE Trans. Smart Grid, 2022.

Publications in Transfer Learning and Funding Acknowledgments

[1] C. Ren and Y. Xu, "Transfer Learning-Based Power System Online Dynamic Security Assessment: Using One Model to Assess Many Unlearned Faults," *IEEE Trans. Power Systems*, 2019.

[2] C. Ren and Y. Xu, "An Integrated Transfer Learning Method for Power System Dynamic Security Assessment for Unlearned Faults with Missing Data," *IEEE Trans. Power System*, 2021.

[3] Y. Xia and Y. Xu, "A Transferrable Data-Driven Method for IGBT Open-Circuit Fault Diagnosis in Three-Phase Inverters," *IEEE Trans. Power Electronics*, 2021.

[4] Y. Xia, Y. Xu, and N. Zhou, "A Transferrable and Noise-Tolerant Data-Driven Method for Inverter Open-Circuit Fault Diagnosis in Microgrids," *IEEE Trans. Industrial Electronics*, 2023.

[5] Z. Zhou, Y. Xu and C. Ren, "A Transfer Learning Method for Forecasting Masked-Load With Behind-the-Meter Distributed Energy Resources," *IEEE Trans. Smart Grid*, 2022.

[6] Y. Xia, Y. Xu, S. Mondal, and A. K. Gupta, "A Transfer Learning-Based Method for Cyber-Attack Tolerance in Distributed Control of Microgrids," *IEEE Trans. Smart Grid*, 2023.

