
Transfer Learning for Smart Grid 

Data Analytics 

Dr Yan Xu 
Cham Tao Soon Professor in Engineering 
Director, Center for Power Engineering 

Nanyang Technological University
Singapore 

© 2024 Yan Xu All Rights Reserved
1



1

2

3

Background:

Introduction:

Transfer learning:

• Conventional machine learning 

• Transfer learning 

• Power system stability assessment → from learned faults 

to unlearned faults 

• Power converter fault diagnosis → from learned 

converters to unlearned converters 

• Masked-load forecasting → from original load to masked-

load by distributed energy resources (DERs)

• Smart grid & data resources 

• Advanced data-analytics for smart grid
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A traditional power grid – since 1882

配电

Satellite 

PMU
PMU

PMU

SCADA

Generators

Renewables
Energy storage

Distribution 

network

Transmission 

network

Electric vehicle 

Demand reponse

Remote control

Smart meter

NetZero & Carbon Neutrality 

Smart Grid: a modernized power grid with high-level renewables, more 

distributed energy resources, and wide-spread deployments of advanced ICT

What is a “Smart Grid”?1. Background 

2. Introduction 

3. Transfer 
⚫ Power System 

Stability Assessment
⚫ Converter System 

Fault Diagnosis
⚫ Masked-Load 

Forecasting 
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Grid Monitoring System

(Phasor measurement unit (PMU), 

SCADA, etc.)

Asset Sensors

(PQ sensor, battery management 

system, PD sensors, etc.)

Illustration of Grid Data Illustration of Asset Data

Wide-spread deployments of advanced ICT can provide more data and

information about the power system at different levels

Customer Meters

(Residential smart meter, Industrial 

metersetc.) 

Illustration of Customer Data

Source of figures: website (searched in Google)

How to make use of these data to support power system’s 
monitoring, operation & control ? 

Fault flag = 1 ωr stablizes

Ch1 

Ch2

Ch3
Ch1/Ch2 50A/div    Ch3 5/div    Time 20ms/div

ia, ib, ic

ωr changes

Data Resources in Smart Grid1. Background 

2. Introduction

3. Transfer 
⚫ Power System 

Stability Assessment
⚫ Converter System 

Fault Diagnosis
⚫ Masked-Load 

Forecasting 
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Grid Level Asset Level

OPF

LFC

Control

Asses
sment 

Customer Level

Data-driven home energy 

management (HEM)

Non-instructive load 

monitoring (NILM)
Data-driven power 

system stability 

analysis 

Data-driven 

power system 

control & 

operation 

Power converter system 

fault diagnosis 

Li-ion battery health 

monitoring

Feature selection 

& extraction

Supervised 

learning
Unsupervised 

learning
Reinforcement 

learning
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1. Background 

2. Introduction

3. Transfer 
⚫ Power System 

Stability Assessment
⚫ Converter System 

Fault Diagnosis
⚫ Masked-Load 

Forecasting 

Advanced AI and Data-Analytics for Smart Grid

NTU SODA Group’s Research Works 

Residential Load 

Forecasting Asset Risk Assessment



Machine learning model

Training

Database

Machine learning algorithm

• Classification/Regression

• SVM/DNN/ELM/DT…

Input

Output

Training

Real-time 

Measurement

Machine learning 

model

Input output

Offline training

Online application

Assumptions

• Training and application 

data are in the same 

feature space 

• Training and application 

data follow the same 

distribution 

Conventional Machine Learning for Smart Grid Applications 

✓

• The application target may be different

• The application target may have a limited amount of training data

• The target data may have a different distribution 

Machine 

learning model 

may not work in 

practice

Motivations for transfer learning

Ch1/2/3:20A/div, Ch4:2/div, Time:20ms/div

Ch1

Ch2

Ch3

Ch4

Output label = 1
Output label = 7

Three-phase current of 

Inverter 4

Fault occurs

Low accuracy Wrong output

System A 

(Training) 

System B 

(Apply) c

However, in practice, such assumptions may not always hold

1. Background 

2. Introduction 

3. Transfer 
⚫ Power System 

Stability Assessment
⚫ Converter System 

Fault Diagnosis
⚫ Masked-Load 

Forecasting 
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• Domain : D={X, P(X)}, where X is the feature space X ={x1, x2, …, xn} and P(X) is the 

marginal probability distribution.

• Task : T={Y, f(∙)}), where Y is the label space and f(∙) is the objective predictive function, 

which is not observed but can be learned from the training data, and consists of pairs (xi, yi), 

where xiX and yiY. The function f(∙) can predict the corresponding label, f(x), of a new 

instance x.

• Source domain : Ds = {(xsi, ysi)}, (i = 1, 2, …, n), where xsiXS and ysiYS

• Target domain : Dt = {(xti, yti)}, (i = 1, 2, …, m), where xtiXT and ytiYT   (in most cases, 

m<<n)

• Transfer Learning (TL) : Given a source domain Ds and its learning task Ts , a target domain 

Dt and its learning task TT , TL aims to help improve the learning of the target predictive 

function ft (∙) in Dt using the knowledge in Ds and Ts , where Ds ≠ Dt , or Ts ≠ TT .

• Ds ≠ Dt  implies that either the features are different between the two datasets XS ≠ XT, or their 

marginal distributions are different PS (X) ≠ PT(X) 

• Ts ≠ TT  implies that YS ≠ YT or P(YS |XS) ≠ P(YT|XT) 

S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on Knowledge and Data Engineering, 2009.

c

Transfer Learning – Notations and Definitions 1. Background 

2. Introduction 

3. Transfer 
⚫ Power System 

Stability Assessment
⚫ Converter System 

Fault Diagnosis
⚫ Masked-Load 

Forecasting 
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Traditional Learning

S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on Knowledge and Data Engineering, 2009.

Different Tasks

Learning ModelLearning Model Learning Model

Source Tasks

Knowledge Learning Model

Target Tasks

Transfer Learning

Same source and target 

marginal distribution

Same tasks on source 

and target domains

Same tasks on source 

and target domains

Traditional Learning

Inductive Transfer Learning

Transactive Transfer Learning

Unsupervised Transfer Learning

Yes

No

Yes

Yes

No

No T
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Different Categories of 

Transfer Learning

Transfer Learning – Illustration and Different Categories 1. Background 

2. Introduction

3. Transfer 
⚫ Power System 

Stability Assessment
⚫ Converter System 

Fault Diagnosis
⚫ Masked-Load 

Forecasting 
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A. Instance-based Transfer Learning

B. Feature-based Transfer Learning

C. Parameter-based Transfer Learning

• Principle: select or reweight instance that are close to the target (instance weighting)

• Advantage/Suitability: simple implementation, domains differ only in marginal distributions

• Limitations: weight is unknown and difficult to be obtained

• Principle: find the common latent features and use them as a bridge to transfer knowledge 

(feature transformation), minimize marginal/conditional distribution difference preserve 

properties or potential structures of the data, find correspondence between features

• Advantage/Suitability : transfer between different feature spaces

• Limitations: negative transfer

• Principle: individual models for related tasks share some parameters or prior distributions

of hyperparameters

• Advantage/Suitability: same task, same distribution of source and target domain

• Limitation: transferred parameter selection

F. Zhuang et al., “A comprehensive survey on transfer learning,” Proc. IEEE, vol. 109, no. 1, pp. 43–76, Jan. 2021.

c

Transfer Learning – Strategies  1. Background 

2. Introduction 

3. Transfer 
⚫ Power System 

Stability Assessment
⚫ Converter System 

Fault Diagnosis
⚫ Masked-Load 

Forecasting 
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Problem descriptions:

• For pre-fault SA, one model is trained for one fault.

• Only a limit number of faults are considered.

• For practical application, unknown potential faults may 
happen.

• How to use one model to assess many different potential 
unknown faults? 

Transfer learning:

• SA model is a classifier based on hybrid ensemble model.

• RELIEF-F algorithm is used to select the critical features. 

• Feature transformation with an adaptation matrix via
minimizing marginal and conditional distribution
differences (MMD) between the unknown features and the
known features.

Byproduct:

• Using one model to assess many potential faults.

• The correlation between different faults can be revealed, 
thus different faults can be aggregated as one.

Historical DSA 

Database

Real-time Measurement
(Power Generation, Load Demand, 

Bus Voltage Magnitudes)

Source Domain

Labeled Training Data

(Known Fault Condition)

ELM RVFL

Hybrid Ensemble

DSA Model

Classifier

Predictor

OR

Trained Fault ?

Target Domain

Unlabeled Testing Data

(Unforeseen Fault Condition)

Feature Transformation

Minimize Distribution

Transfer Learning

Marginal Conditional

Final DSA Result

DSA Model

Yes
No

Activate Preventive Control

Offline Online 

Feature Selection

C. Ren and Y. Xu “Transfer Learning-Based Power System Online Dynamic Security Assessment: Using One Model to Assess Many

Unlearned Faults,” IEEE Transactions on Power Systems, 2019.
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[1] Transfer Learning for Power System Stability Assessment with Unlearned Faults1. Background 

2. Introduction

3. Transfer 
⚫ Power System 

Stability Assessment
⚫ Converter System 

Fault Diagnosis
⚫ Masked-Load 

Forecasting 
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Mutual Transfer Accuracy Matrix

Online Testing Results

Different structure of the incremental broad learning for (a) Increment of enhancement hidden nodes, (b) Increment of 
features, (c) Increment of enhancement hidden nodes, features, and new training instances

1. Background 

2. Introduction 

3. Transfer 
⚫ Power System 

Stability Assessment
⚫ Converter System 

Fault Diagnosis
⚫ Masked-Load 

Forecasting 
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Unlearned Faults,” IEEE Transactions on Power Systems, 2019.

[1] Transfer Learning for Power System Stability Assessment with Unlearned Faults



Problem description:

• In practice, the unlearned fault with incomplete data may occur at the same time. Under this scenario, the
above feature-based TL method and GAN-based method will be ineffective, since the incomplete data inputs
are from the unlearned faults.

Principle of adversarial training:

• 1) Feature learning to extract the common impact features of two domains in one feature space from the input
data for different faults, named domain-invariant features; 2) by fooling the domain discriminator with such
features, the distribution of source domain and target domain becomes more similar; 3) the SA classifier trained
by source domain can be used for unlabeled instances in target domain.

• The feature learning stage can also extract the domain-invariant features by incomplete target domain data,
hence the proposed method can also accurately work with missing data.

Training Process 

Forward Propagation

Application Process

Source 

Domain Ds 

(Historical 

Data)

Target 

Domain Dt

(Real-time 

Data)

 Domain 

Invariant 

Feature 

Vector f t

Domain 

Invariant 

Feature 

Vector f s

Output: 

Stability Status

Reversal 

Gradient 

Layer 

R(·)

Input: 

Complete/

Incomplete 

Power 

System 

Operating 

Variables 

(e.g., Power 

Generation/

Load, and 

Bus Voltage 

Magnitude, 

etc)

Deep Feature 

Extractor EΘf 

DSA Classifier CΘy 

Domain D iscriminator

 DΘd 

Class 

Label y

Loss of Dd  

as Eq.(2)

Domain 

Label d Training Process 

Back Propagation

Loss of Cy 

as Eq.(1)

C. Ren and Y. Xu, “An Integrated Transfer Learning Method for Power System Dynamic Security Assessment for Unlearned Faults

with Missing Data,” IEEE Trans. Power Syst., 2021.

[2] Transfer Learning for Power System Stability Assessment with Unlearned Faults 
and Missing Data

1. Background 

2. Introduction 

3. Transfer 
⚫ Power System 

Stability Assessment
⚫ Converter System 

Fault Diagnosis
⚫ Masked-Load 

Forecasting 
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Proposed adversarial training framework for knowledge transfer 



Figure. Testing results of the proposed TL method. (a) complete target domain data; (b) 12.5% missing target 
domain data; (c) 25% missing target domain data.
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Figure. Confusion Matrix of (a) 12.5% missing target 
domain data; (b) 25% missing target domain data.
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2. Introduction 

3. Transfer 
⚫ Power System 
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⚫ Converter System 
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[2] Transfer Learning for Power System Stability Assessment with Unlearned Faults 
and Missing Data



Inverter 

system

Conventional data-driven inverter fault diagnosis process

Historic database

Learning algorithms
Machine learning 

classifier

Offline 

training

Real-time 

sampled signals 
Diagnostic model

Diagnostic

Result

Online 

application

❑ The diagnostic model is trained by a fault database of a specific inverter system

❑ Only work for the corresponding system but not for an unlearned inverter system

Source system

Target system

M

M

Sufficient 

Labeled Data

Insufficient 

Unlabeled Data

Online 

Sampled Data

Diagnostic Knowledge 

of Target System

Target system

+

Diagnose

Learning

Transferrable fault diagnosis (Adapt one trained diagnostic model for different inverter systems)

System A System B

labeled source dataset

Ds = {(xsi, ysi)}

unlabeled target dataset

Dt = {xtj}

Extract diagnostic knowledge of the target system 

❑ xs and xt, ys and yt belong to the same space

❑ The marginal, conditional distribution of source, target data are 

different, i.e. Ps(xs) ≠ Pt(xt), Ps(xs|ys) ≠ Pt(xt|yt)

Y. Xia and Y. Xu, “A Transferrable Data-Driven Method for IGBT Open-Circuit Fault Diagnosis in Three-Phase Inverters,” IEEE Trans.

Power Electron., 2021.

[3] Transfer Learning for Open-Circuit Fault Diagnosis of Different Inverter Systems1. Background 

2. Introduction 

3. Transfer 
⚫ Power System 

Stability Assessment
⚫ Converter System 

Fault Diagnosis
⚫ Masked-Load 

Forecasting 
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Feature 

learning
Offline

stage

Online

stage
Real-time

Measurements

Feature 

Transformation Matrix

Diagnostic 

Model

Final Diagnostic

Result

Source Dataset

(labeled)

Target Dataset

(unlabeled)

Source

features

Target

features

ELM Initial

classifier

Model adaptation
• Minimize distribution 

divergence

Transferred

classifier

1. Feature Transformation

➢ Pre-process the training and testing data by 

integrating them into a common feature space:

1) Transform original data into PCA subspace

2) Geodesic Flow Kernel (GFK) is used to extract 

the path between the two subspaces 

1 2 1

1 2

2 3 2

T T

ps

ps ps T T

ps

Z Z U X
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H ( )q g x x= = H

Original data Extracted features

2. Model Adaptation

➢ Minimize the distribution divergence between source and target 

data:

1) An initial diagnostic model is trained by ELM

2) MMD (evaluate the distribution divergence between two systems)

3) Optimize β (output weight)

( ) ( )f q q b   =   + = P (update β)
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J D R
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Laplacian regularization 

(improve manifold feature)
MMD 

minimization

Training

loss function 

∂θ/∂β=0 ( )
1
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−

= + + E M L P EY

optimization problem θ

1. Background 
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[3] Transfer Learning for Open-Circuit Fault Diagnosis of Different Inverter Systems



Offline Test Results

System A System B Average 

accuracySource Dataset Target Dataset Test Dataset

Labeled 6600 

samples with 22 

labels

No transfer learning {Label=1~22} 62.79 % 

60% of {Label=1} 40% of {Label=1}, {Label=2~22} 82.82 %

60% of {Label=1, 2} 40% of {Label=1,2}, {Label=3~22} 83.36 %

60% of {Label=1~7} 40% of {Label=1~7}, {Label=8~22} 87.05 %

60% of {Label=1, 2, 5, 11, 

19}

40% of {Label=1, 2, 5, 11, 19}, 

{Label=3~4, 6~10, 12~18, 20~22}
87.06 %

60% of {Label=1~13, 

16~20}

40% of {Label=1~13, 16~20}, 

{Label=14~15, 21~22}
91.24 %

60% of {Label=1~22} 40% of {Label=1~22} 96.76 %

Average Test Accuracy Performance under Different Target and Test Datasets

Methodology

Average accuracy

Without 

normalization

With 

normalization

KNN 46.73 % 55.58 %

ELM 55.70 % 62.79 %

BN 24.12 % 64.79 %

DT 43.97 % 52.07 %

FFT + PCA + BN 46.36 %

FFT + ReliefF + 

ELM/RVFL ensemble
64.42 %

FFT + ReliefF + RVFL 

ensemble
51.45 %

Proposed method 88.53 %

Comparison with Other Intelligent Algorithms

Average accuracy for randomly selected target 

and test datasets

➢ In practical application, a comprehensive target dataset may not be available

➢ A minibatch as target dataset is selected covering one or several fault labels

Real-Time Results

Experimental platform

Ch1 

Ch2

Ch3

Ch4

Fault occurs

Output label = 4
Output label = 1

Ch1/2/3:400A/div, Ch4:5/div, Time:20ms/div

ia, ib, ic

Ch1 

Ch2

Ch3

Ch4

ia, ib, ic Fault occurs

Output label = 10

Ch1/2/3:400A/div, Ch4:5/div, Time:20ms/div

Output label = 1

Diagnostic

results

End of acceleration 

Output label = 1
ia, ib, ic

Ch1 

Ch2

Ch3

Ch4
Ch1/2/3:200A/div, Ch4:5/div, Time:40ms/div

Motor accelerates 

Output label = 1

ia, ib, ic

Ch1/2/3:200A/div, Ch4:5/div, Time:40ms/div

Ch1 

Ch2

Ch3

Ch4

Output label = 1

ia, ib, ic

Ch1/2/3:200A/div, Ch4:5/div, Time:40ms/div

Under 

Different 

speeds
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Y. Xia, Y. Xu, and N. Zhou, “A Transferrable and Noise-Tolerant Data-Driven Method for Inverter Open-Circuit Fault Diagnosis in 

Microgrids,” IEEE Trans. Ind. Electron., 2023.

➢ Two-level multi-classification problem: locating the faulty inverters and diagnose the faults  

➢ Each fault label indicates a specific status of fault condition (faulty inverter, faulty switch)

DC

Source

T1 T3 T5

T4 T6 T2

LC filterThree-phase inverter Line

DG 1

DC

Source

T1 T3 T5

T4 T6 T2

LC filterThree-phase inverter Line

DG N

Load 1

Load 2

AC Bus Faulty Inverter Label Faulty Inverter Label

No fault 1 … …

DG 1 2 DG N−1 N

DG 2 3 DG N N+1

TABLE 1.1 FAULT LABELS OF FAULTY INVERTER LOCALIZATION

Faulty Switch Label Faulty Switch Label

No fault 1 T4 5

T1 2 T5 6

T2 3 T6 7

T3 4

TABLE 1.2 FAULT LABELS OF SWITCH FAULT CLASSIFICATION

T1 T3 T5

T4 T6 T2

Source Inverter

T1 T3 T5

T4 T6 T2

Target Inverter

Source Dataset 
A limited number of

Target Dataset 

Diagnostic 

Knowledge

Diagnostic 

Model for 

Target 

Inverter

D
ia

g
n
o

se

One trained classifier may only work in a specific inverter

>>> transferability of data-driven models

labeled source dataset Ds = {(xSi, ySi)} (i = 1, 2, …, NS) 

labeled target dataset DT = {(xTj, yTj)} (j = 1, 2, …, NT)

NS >> NT (limited number of labeled target data)

Diagnostic knowledge of the target inverter

[4] Transfer Learning for Fault Diagnosis of Multiple Inverters in a Noisy Microgrid 1. Background 

2. Introduction 

3. Transfer 
⚫ Power System 

Stability Assessment
⚫ Converter System 

Fault Diagnosis
⚫ Masked-Load 

Forecasting 
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Inverter 1

Inverter 2

Inverter 3

Inverter N

Features 1

Features 2

Features 3

Features N

Eigenvalue

Analytics
V1, P1

V2, P2

V3, P3

VN, PN

Inverter Fault Localization

Localization Model 1

Localization Model 2

Localization Model 3

Localization Model N

Decision Making

Identify the Faulty 

Inverter

Output:

Inverter Fault Label

 DG 1R Switch Fault Classifier 1

 DG 2

 DG 3

 DG N

Switch Fault Classifier 2

Switch Fault Classifier 3

Switch Fault Classifier N

Switch 
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Q 

Switch Fault Classification

Eigen-

decomposition 

+ Eigenvalue

analytics

Training by

ELM
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Localization Model 2

Localization Model 1

Historic 

Database

.

.

.
.
.
.
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.

Source 

Inverter

Target 

Inverter 1

Source Dataset

Target Dataset 1

Target Dataset 2

Training 

by 

DAELM

Switch Fault 
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Switch Fault 
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Offline Development for Faulty Inverter Localization Offline Development for Switch Fault Classification

Online Application of the proposed method

Target 

Inverter 2

E
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p
o

si
ti

o
n
 

an ELM-based initial classifier is trained (Ds = {(xSi, ySi)})

>>> Optimize β by DAELM𝑓 𝝆 = 𝛽 ∙ 𝜑(𝛼𝝆 + 𝑏)=𝛽H

Model Adaptation Objective: 
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To find β fit in both source and target domain.

Loss function 
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Inverter 1 Inverter 3 Testing 

accuracySource Dataset Target Dataset Test Dataset

2100 instances 

with 7 labels

NA (without Transfer 

Learning)

1400 

instances with 

7 labels

60.07 %

80 instances of {Label=1} 76.25 %

30 instances of {Label=1},

30 instances of {Label=2}.
79.81 %

30 instances of {Label=1}, 

20 instances of {Label=3}, 

20 instances of {Label=5}.

92.04 %

10 instances of 

{Label=1} ~ {Label=7}
99.64 %

TABLE TEST ACCURACY PERFORMANCE UNDER DIFFERENT TARGET DATASETS

Methodology Average accuracy

ELM 70.41 %

DT 87.29 %

ELM ensemble 86.21 %

ReliefF + ELM/RVFL ensemble 89.71 %

PCA + BN 88.07 %

Proposed transferrable method 94.43 %

TABLE COMPARISON WITH OTHER INTELLIGENT ALGORITHMS

Main 

Grid

Switch

PCC

DG 1 DG 2 DG 3

DG 4

1 2 4 6 7 8

3

Main 

Grid

Switch

PCC

DG 1 DG 2 DG 3

DG 4

1 2 4 6 7 8

5 9

11 10 12 13

Node

Electrical lines

Figure. The topology of the 13-bus microgrid system.

Opal-RT

Oscilloscope

Host PC

Figure. Real-time experimental test based on Opal-RT.

Ch1/2/3/4:10kW/div, Ch5:2/div, Time:40ms/div

Active power P3 P4

Active power P1 P2

Fault occurs

Output label = 1
Output label = 2

Ch1

Ch2

Ch3

Ch4

Ch5

Ch1/2/3:50A/div, Ch4:2/div, Time:20ms/div

Three-phase current of 

Inverter 1

Fault occurs

Output label = 4

Output label = 1

Ch1

Ch2

Ch3

Ch4

Real-time experimental results when inverter 1 is under T3 open -
circuit fault (a) faulty inverter localization (b) switch fault classification.

Bus voltage V1 V2 V3 V4 

Fault occurs

Output label = 1

Output label = 5

zoom-in

Ch1/2/3/4:1V/div, Ch4:2/div, Time:200ms/div

Ch1

Ch2

Ch3

Ch4

Ch5

312V

311V

Ch1/2/3:20A/div, Ch4:2/div, Time:20ms/div

Ch1

Ch2

Ch3

Ch4

Output label = 1
Output label = 7

Three-phase current of 

Inverter 4

Fault occurs

Real-time experimental results when inverter 4 is under T6 open -

circuit fault (a) faulty inverter localization (b) switch fault classification.
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Load demand is being masked by distributed energy resources (DERs)

https://www.waseda.jp

⚫ Distributed generation (DG): rooftop PV, small wind turbine...

⚫ Energy storage system (ESS): residential batteries, UPS...

⚫ Flexible loads: Electric vehicles (EV), smart appliances...

⚫ Behind-the-meter (BTW) 

installation

⚫ Continuous growing with 

less visibility 
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Measured load is no longer merely native demand, as it contains DERs
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Problem descriptions: 

⚫ Residential load is masked by a mix of different distributed energy resources (DERs);

⚫ DERs are installed behind the meter, thus information about them are not available;

⚫ Only available datasets for supervised learning is historical unmasked load and present 

masked load.

⚫ Available datasets:

Historical 

unmasked load

Present masked 

load

𝐷𝑆 = {(𝑥𝑆
𝑖 , 𝑦𝑆

𝑖)}𝑖=1
𝑛𝑆 𝐷𝑇 = { 𝑥𝑇

𝑖 } 𝑖=1
𝑛𝑇

⚫ Large dataset

⚫ sufficient to train a model

⚫ Small dataset, 

unsupervised

⚫ Since DERs in frequent 

developments

⚫ Objective

Find an input-output 

pattern g(∙) for masked 

load forecasting:

𝒚𝑻 = 𝒈(𝒙𝑻)
with knowledge in 𝐷𝑆
and 𝐷𝑇.

(Transfer learning) 

Note that 𝑫𝑺 and 𝑫𝑻 has different but related relationship:

𝒙𝑺 is latent in 𝒙𝑻, since 𝒙𝑻 = 𝒙𝑺 + DERs

Transfer

𝒙𝑻 = 𝒙𝑺 + DERs
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Proposed Framework: Domain Adaptation Neural Network (DANN)

Online application

• Input data from target domain, 𝑥𝑇
• Input 𝑥𝑇 to feature extractor then outcome predictor, 

calculate 𝑦𝑇.

Offline training: Backward training

• Update parameters as: 

• 𝐺𝑦
′ = 𝐺𝑦 − 𝜆𝑦

𝜕ℒ𝑦

𝜕𝐺𝑦
  

• 𝐺𝑑
′ = 𝐺𝑑 − 𝜆𝑑

𝜕ℒ𝑑

𝜕𝐺𝑑
;

• 𝐺𝑓
′ = 𝐺𝑓 − 𝜆𝑓1

𝜕ℒ𝑦

𝜕𝐺𝑓
+ 𝜆𝑓2

𝜕ℒ𝑑

𝜕𝐺𝑓
 

Z. Zhou, Y. Xu, and C. Ren, "A Transfer Learning Method for Forecasting Masked-Load With Behind-the-Meter Distributed Energy 

Resources," IEEE Trans. Smart Grid, 2022.
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Firstly, feature vectors  𝑓𝑆 and 𝑓𝑇 are extracted 

from 𝐷𝑆 and 𝐷𝑇. Then, a domain discriminator will 

discriminate 𝑓𝑆 and 𝑓𝑇 into 𝐷𝑆 or 𝐷𝑇. Intuitively, 

when a discriminator fails to distinguish 𝑓𝑆 and 𝑓𝑇
from each other, that means 𝑓𝑆 and 𝑓𝑇 are in the 

similar distribution. Based on this idea, a feature 

extractor is trained against the discriminator, 

aiming to fool the discriminator. As a result, 𝑓𝑆 and 

𝑓𝑇 has similar data distribution, and 𝑓𝑇 could be 

compatible to a forecasting model which is trained 

with 𝑓𝑆.

• 𝐷𝑆 is unmasked load

• 𝐷𝑇 is masked load

[5] Transfer Learning for Forecasting Masked-Load due to Behind-the-Meter DERs



Test Settings

Test Results

When DER penetration level increases: 

“duck curve” of masked load becomes more apparent;

difference between source data and target data are larger;

◆ Assume load is masked by a mix of DERs (PV, EV)

◆ To mimic dynamic development of DERs,

different penetration of target datasets are tested. 

𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑇= 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑆 − 𝑝1 ∗ 𝑃𝑉 + 𝑝2 ∗ 𝐸𝑉 

𝑝1, 𝑝2 𝑎𝑑𝑗𝑢𝑠𝑡
𝑎𝑣𝑒 𝑝1∗𝑃𝑉

𝑎𝑣𝑒(𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑆)
%,

𝑎𝑣𝑒 𝑝2∗𝐸𝑉

𝑎𝑣𝑒(𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑆)
% = [10%, 20%,… , 100%] 

⚫ Benchmark models:

1.   Unmasked-load to forecast masked-load: 𝒔𝒓𝒄 → 𝒕𝒈𝒕
2.   Masked-load to forecast masked-load: 𝒕𝒈𝒕 → 𝒕𝒈𝒕

Models
nMAE (%) in Different DERs Penetrations Levels

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

1 12.28 17.97 21.96 25.16 27.72 29.85 31.43 32.67 33.73 34.48

2 3.69 5.06 6.32 8.26 9.75 9.60 11.43 11.70 11.67 11.05

3 3.21 4.13 4.59 5.30 5.81 5.60 6.40 6.99 8.36 9.61

*1: Benchmark model 1: 𝑠𝑟𝑐 → 𝑡𝑔𝑡

*2: Benchmark model 2: 𝑡𝑔𝑡 → 𝑡𝑔𝑡

*3: Proposed model: DANN
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At the lower DER 

penetration levels, 

accuracy improvement by 

TL is not significant since 

the load is just slighted 

masked (data distribution is 

not changed much). With 

growing DER levels, 

effectiveness of TF is more 

and more evident.  

Z. Zhou, Y. Xu, and C. Ren, "A Transfer Learning Method for Forecasting Masked-Load With Behind-the-Meter Distributed Energy 

Resources," IEEE Trans. Smart Grid, 2022.
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